Д.А. Гиммельберг, П.В. Овчинников, П.П. Савельчев

Практическое применение методов оценки качества моделирования производственных систем

В настоящее время руководство ведущих российских предприятий (в различных отраслях народного хозяйства) уделяет особое внимание процессам повышения эффективности процессов управления, снижения воздействия на эффекты управления факторов риска и неопределенности. Особая роль в данном отношении отводится вопросам детального предварительного планирования деятельности производственных систем, оценки влияния управляющих воздействий и внешних факторов на их выходные характеристики [1]. Одним из эффективных инструментов предварительного анализа и прогнозирования работы производственных систем является их математическое и компьютерное моделирование [2]. С развитием компьютерной техники большое распространение приобретает имитационное моделирование, позволяющее провести многократное тестирование работы изучаемой системы в ходе серии вычислительных экспериментов.

Результаты имитационного моделирования могут быть полезными при принятии управленческих решений, только в том случае, когда они имеют необходимую точность и достоверность, т.е. сама модель может считаться качественной [3].

На одном из отечественных предприятий, являющимся лидером в секторе дискретного машиностроения, осуществляется многоэтапная программа цифровой трансформации. В ходе реализации одного из направлений трансформации руководство компании поставило задачу внедрения технологий цифрового моделирования производственных и коммерческих систем. При этом возникла необходимость оценки качества и применимости получаемых моделей. Исходя из структуры и объема данных, имеющихся в распоряжении разработчиков моделей, предлагается оценивать их качество по трем компонентам [4]:

- адекватность;
- чувствительность;
- устойчивость.

Адекватность модели позволяет оценить её способность описывать реальную систему. Для оценки адекватности необходимо:

1. Выделить ключевые выходные характеристики модели. Данные характеристики должны быть измеримыми численно, фиксироваться в

процессе функционирования реальной системы, отражать существенные характеристики реальной системы, рассчитываться в ходе работы модели.

Для рассматриваемого предприятия в качестве основных выходных характеристик (зависимых переменных) были выбраны:

- общий фактический объем выпуска продукции;
- фонд фактически отработанного времени;
- фонд оплаты труда;
- средняя загрузка персонала.

Обозначим выходные характеристики через Y_i , где $i = \overline{1,N}$, а N – общее количество выходных характеристик.

- 2. Для каждой переменной Y_i сформировать вектор фактических значений при различных режимах работы реальной системы ${Y_i}^p$.
- 3. Для каждой переменной Y_i сформировать вектор значений, рассчитанных при помощи модели, Y_i^{M} . Для обеспечения сравнимости рядов данных можно предложить свести векторы фактических и расчетных значений в таблицу (табл. 1).
- 4. Рассчитать величину показателя адекватности модели, в качестве которой предлагается принять среднеквадратическое отклонение расчетных значений от фактических.

Оценка чувствительности позволяет сделать вывод о степени влияния изменения входных параметров системы на изменение выходных характеристик. Для ее проведения необходимо:

- 1. Из набора ключевых выходных характеристик (сформированных на этапе оценки адекватности) дополнительно выделить 2-3 наиболее важных параметра.
- 2. Определить наиболее важные входные параметры X_k , k=1,M. В качестве таковых для машиностроительного предприятия могут быть приняты:
 - план выпуска продукции;

Таблица 1 Расчетные и фактические значения выходной характеристики модели

Наименование зависи-			
мой переменной			
Фактическое значение			
переменной $Y_i^{\ p}$			
Модельное (расчетное)			
значение переменной			
Y_i^{M}			

- общее количество персонала (либо количество персонала по каждой профессии);
 - доступный фонд рабочего времени;
 - доступный фонд времени переработок.
- 3. Для каждого параметра X_k определить максимальное $X_k = X_{k \max}$ и минимальное значения $X_k = X_{k \min}$.
- 4. Рассчитать значения выходных параметров модели (функции отклика) при максимальном и минимальном значениях входных параметров $Y_1 = f\left(X_{k\max}\right)$ и $Y_2 = f\left(X_{k\min}\right)$.
- 5. Рассчитать величину относительного среднего изменения параметра X_k :

$$\Delta X_k = \frac{2(X_{k \max} - X_{k \min})}{(X_{k \max} + X_{k \min})} \cdot 100\%.$$

6. Определить значение отклика модели. Исчисляется относительное изменение зависимой переменной Y:

$$\Delta Y_k = \frac{2|Y_1 - Y_2|}{(Y_1 + Y_2)} \cdot 100\% .$$

В результате для k-го параметра модели получают пары значений (X_k,Y_k) , что характеризует чувствительность модели по этому параметру. Аналогично формируются пары для других параметров модели, которые образуют множество $\{\Delta X_k, \Delta Y_k\}$. Предполагается, что качественная модель будет обладать чувствительностью, следовательно, относительные значения отклонений входных и выходных параметров будут соответствовать друг другу.

Устойчивость модели — это ее способность сохранять одинаковый характер отклика модели на всем диапазоне входных параметров. Чем ближе структура модели к структуре системы и чем выше степень детализации, тем устойчивее модель.

Для оценки устойчивости необходимо:

- 1. Выбрать перечень наиболее значимых входных параметров X_k , $k = \overline{1, M}$.
- 2. Выбрать перечень наиболее значимых выходных параметров Y_i , $i = \overline{1, N}$.
- 3. Для каждого выходного значения параметра задать вектор расчетных значений, изменяя один из входных параметров и фиксируя остальные. Т.е. для каждого выходного параметра получим М таблиц следующего формата:

Значение параметра X_k			
Соответствующее значение			
параметра Y_i			

Например, если в качестве выходного параметра фиксируется средняя загрузка персонала, а в качестве входного — план производства, то получим форму, соответствующую табл. 2:

Таблица 2 Зависимость средней загрузки персонала от плана производства

План производства				
Соответствующая	средняя			
загрузка персонала				

В дальнейшем оценка устойчивости модели определяется при помощи статистических критериев.

Литература

- 1. Максимов Д.А. Моделирование производственного сегмента предприятия с учетом риска производственной программы // Вестник Алтайской академии экономики и права. 2020. № 6-2. С. 262–270.
- 2. Аюнов В.В. Имитационное моделирование технических систем. Пермь: ИПЦ «Прокрость», 2017. 242 с.
- 3. Ткачев А.Н. Принципы и технологии тестирования имитационных моделей. Новочеркасск, 2019. 114 с.
- 4. Ткачев А.Н. Методологические основы создания цифровых двойников. Новочеркасск, 2019. 116 с.